Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization
نویسندگان
چکیده
منابع مشابه
Multiobjective Particle Swarm Optimization Using Fuzzy Logic
The paper presents FMOPSO a multiobjective optimization method that uses a Particle Swarm Optimization algorithm enhanced with a Fuzzy Logic-based controller. Our implementation makes use of a number of fuzzy rules as well as dynamic membership functions to evaluate search spaces at each iteration. The method works based on Pareto dominance and was tested using standard benchmark data sets. Our...
متن کاملImproving Particle Swarm Optimization using Fuzzy Logic
Particle Swarm Optimization is a population based optimization technique that based on probability rules. In this technique each particle moves toward their best individual and group experience had occurred. Fundamental problems of a standard PSO algorithm are fall into local optimum trap and the low speed of the convergence. One of the methods to solve these problems is to combine PSO algorith...
متن کاملCooperative Fuzzy Particle Swarm Optimization
Particle swarm optimization is a population based optimization technique that is based on probability rules. In this technique each particle moves toward their best individual and group experience had occurred. Fundamental problems of standard PSO algorithm are the falling into the trap of local optimum and its low speed of convergence. One approach for solving the above problems is to combine ...
متن کاملportfolio optimization using particle swarm optimization method
the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...
متن کاملFeedback learning particle swarm optimization
In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSOQIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2016
ISSN: 1976-9172
DOI: 10.5391/jkiis.2016.26.1.087